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1. Introduction – historical outline

The theory of (discrete) dynamical systems is extensive and strongly expanding
field of mathematics that uses a lot of facts from various branches of mathematics
including real analysis. It is interesting, therefore, to consider the issues associating
the discrete dynamical systems theory and real analysis. In this chapter we will present
some issues concerning entropy of functions belonging to different Zahorski classes.

The results presented in this part are mainly based on the paper [22] and [23]. If
we give statements from other publications related to this topic, this will be marked
by giving references to the relevant article.

We start with a short historical overview of the problems presented in this chapter.
First, we present some intuitive description of problems connected with information

system and information flow. We will not present the issues of information systems in
details (basic facts on this subject can be found, among others in [24, 25]). However,
assume that we have a set X of elements (information) divided into a finite number
of disjoint subsets {A1, A2, . . . , Ak}, which are distinguished on the basis of fixed
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attributes (this partition is denoted by P ). Suppose also that we have a probability

measure1 µ on X , so
k
∑

i=1

µ(Ai) = 1. Then we may (see [26]) assign to the partition P

the number (the entropy of partition) defined in the following way:

H(P ) := −
k
∑

i=1

µ(Ai) · logµ(Ai).

Roughly speaking, if partition P describes a state of information flow, the number
H(P ) may be regarded as a “measure of uncertainty”. If H(P ) = 0, then situation
is defined precisely – measure is focused on some set Ai0 from the partition P (i.e.
µ(Ai0 ) = 1). Moreover, we can say that the higher the entropy of partition is, the
greater uncertainty is (in this case, the measure is more evenly distributed over the
different sets of the partition).

After a given period of time, elements of X change the values of their attributes
and thereby they “move” to the other sets. Perhaps a new partition of X (onto sets
measurable with respect to µ) is created. These changes are described by a certain
function – let us denote it by φ. After the next unit of time, the elements “move”
again and we obtain a new partition of X . The changes are described by the function
φ. It means that in comparison to initial state these changes are described by the
function φ2 = φ◦φ. Going further in this way, we obtain the dynamics of the function
φ. The entropy of this function (the definition one can find at the end of this section)
determines the level of uncertainty of dynamics of function φ. If it is 0, then we can
talk about a certain stability of this dynamics. If it is greater than 0, we can say that
this dynamics is chaotic and the number qualified as the entropy can be considered
as a certain kind of “measure of chaos”.

In the sixties of the twentieth century R.L. Adler, A.G. Konheim and M.H. McAn-
drew [1] introduced the notion of the topological entropy of a continuous function
f : X 	 (i.e f : X → X) defined on a compact space X . In 1971 T. Goodman [11]
proved the variational principle determining the relationship between the topological
entropy and the entropy with respect to measure (cf. Theorem 7.7). Earlier, in 1969,
L.W. Goodwyn [12] proved that for a fixed invariant measure, the entropy of function
with respect to this measure is not greater than its topological entropy.

In the case of functions important from the point of view of the real analysis
theory (e.g. functions belonging to a fixed Zahorski class) their entropy with respect
to a measure is difficult to use because of the necessity of constructing and selecting
invariant measures. Since each Zahorski class contains also discontinuous functions,
we can not directly apply the original definition. Fortunately, in [7] it has been shown
that there is a possibility of using existing definitions in the case of discontinuous
functions. It is worth noting that until now the topological entropy has been mainly
related to Darboux-like functions ([7, 22, 23, 21, 17, 14]).

Now, we shortly recall definition of a topological entropy given for continuous
function by R. Bowen [3] and E. Dinaburg [8] and extended to an arbitrary function
by Čiklová [7].

1 Assumptions concerning this measure and the corresponding functions are described in details in
Section 7.
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Let (X, ρ) be a compact metric space, f : X 	 be a function, ε > 0 and n ∈ N.
A set M ⊂ X is (n, ε)-separated if for each x, y ∈ M , x 6= y there is 0 6 i < n such
that ρ(f i(x), f i(y)) > ε. Let

sn(ε) = max{card(M) : M ⊂ X is (n, ε)-separated set}.

The topological entropy of the function f is the number

h(f) = lim
ε→0+

lim sup
n→∞

[

1

n
log (sn(ε))

]

.

A detailed analysis of behaviour of various functions pointed out the desirability of
searching subsets of a domain of a function, or even points, on which the behaviours of
a function having significant impact on the value of its topological entropy, are focused.
Description of such analysis will be presented in sections 3 and 4. This analysis led
us to distinguish an important object – “a strong entropy point of a function” (the
respective definition is presented in Section 4). Of course, not every function (even if
we assume its continuity) has a strong entropy point. For this reason, issues related to
approximating functions by other functions with a strong entropy point seemed to be
interesting ([22, 23, 14]). At the same time it is interesting to approximate a function
by functions with “a lot of continuity points”. Therefore, uniform convergence is not
a very convenient tool. Moreover, it is worth noting that if f belongs to any Zahorski
class, then f is almost continuous i.e each open set containing the graph of this
function contains a graph of a continuous function (see Proposition 6.1). For these
reasons, it is quite natural to consider Γ -approximation. More information about this
kind of approximation is presented in Section 5.

2. Preliminaries

Throughout the paper N and R denote the set of positive integers and real numbers,
respectively. We use the letter λ to denote the Lebesgue measure in R.

The symbol D(X,Y ) (B1(X,Y )) denotes the family of all functions f : X → Y

which are Darboux functions (of first Baire class). In both the above notations if
X = Y we will write only one X , e.g. D(X) instead of D(X,X). Moreover, if we
wish to consider the intersection of two classes of functions, we shall write them next
to each other (e.g. DB1(X,Y ) or DB1(X)). Furthermore, we write D and B1 if
X = Y = R.

Let f : X 	. Then we define f0(x) = x and f i(x) = f(f i−1(x)) for any i ∈ N. If
A ⊂ X and n ∈ N then f−n(A) = {x ∈ X : fn(x) ∈ A}. A point x0 ∈ X is a fixed
point of a function f if f(x0) = x0. A set of all fixed points of f we denote by Fix(f).
We say that a space X has the fixed point property if Fix(f) 6= ∅ for any continuous
function f : X 	. If x0 ∈ X , fm(x0) = x0 for some m ∈ N and fn(x0) 6= x0 for any
n ∈ {1, . . . ,m− 1}, then we call a point x0 a periodic point of f of prime period m.
The symbol Perm(f) stands for a set of all periodic points of f of prime period m.
W say that x0 ∈ X is a periodic point of f if x0 ∈

⋃

n∈N

Pern(f). For any x ∈ X the
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orbit of f at the point x is the set {x, f(x), f2(x), f3(x), . . . }. If x ∈ Perm(f) for some
m ∈ N then the orbit of f at the point x is called a periodic orbit of f of period m.

We say that functions f, g : X 	 are conjugate via a homeomorphism φ : X 	 if
φ ◦ f = g ◦ φ.

Let f : X → Y , A ⊂ X and B ⊂ Y . We say that a set A f -covers a set B (denoted
by A →

f
B) if B ⊂ f(A). Moreover, the restriction of f to the set A is denoted by

f ↾ A. The symbol card(A) stands for cardinality of A.
Let (X, ρ) be a metric space. The symbol dist(x,A), where x ∈ X and A ⊂ X ,

stands for a distance from the point x to the set A. If x0 ∈ X and r > 0, then we use
the symbol B(x0, r) to denote an open ball with the centre at x0 and the radius r.

We say that a topological space X is an m-dimensional topological manifold with
boundary if X is a second countable Hausdorff space and every point q ∈ X has
a neighborhood that is homeomorphic to the m-dimensional upper half space H

m =
{(x1, . . . , xm) ∈ R

m : xm > 0} (see [15]).
We say that α ∈ R is a left (right) range of f : R 	 at x0 ∈ R if f−1(α) ∩ (x0 −

δ, x0) 6= ∅ (f−1(α) ∩ (x0, x0 + δ) 6= ∅) for any δ > 0. The symbols R+(f, x0) and
R−(f, x0) stand for the sets of all left and all right ranges of f at x0, respectively.

Let f : [0, 1] 	 be a Darboux function. A point x0 ∈ (0, 1) (x0 = 0, x0 = 1) is an
almost fixed point of f (for short x0 ∈ Fixa(f)) iff x0 ∈ int(R−(f, x0))∪int(R

+(f, x0))
(x0 ∈ int(R+(f, x0)), x0 ∈ int(R−(f, x0))).

For any finite family {I1, . . . In} of closed intervals contained in [0, 1] we define
a matrix Mf (I1, . . . In) = [aik]i,k6n in the following way: aik = 1 if Ii →

f
Ik and

aik = 0 otherwise. A maximal absolute value of an eigenvalue of this matrix will be
denoted by σ(Mf (I1, . . . In)).

3. Bundles connected with function

In this section we will concentrate on a metric space (X, ρ). We write it X for
short.

We start with the example of the function (having some special property) defined
on the square I2 = [0, 1]× [0, 1] with the Euclidian metric.

In the square I2 we consider two rectangles P1 with vertices a1, a4, b4, b1 and P2

with vertices c, d, e, k. We divide P1 and P2 into rectangles as it is shown in Figure 1.
We define the function f : I2 	 in the following way: f((0, 0)) = (0, 0) and f(t) = t if
t belongs to the rectangle P with vertices x, q, r, b4. Moreover, we define the function
f on P1 as follows: we “stretch” each rectangle from the partition of P1 onto the
rectangle P1 in such a way that the line segment with endpoints a3 and b3 is converted
to the line segment with endpoints a1 and b1, the line segment with endpoints a2 and
b2 is converted to the line segment with endpoints a4 and b4. On the segments a1b1 and
a4b4 function f is the identity. Analogously we define the function f on the rectangle
P2. Next we extend f to continuous function defined on I2.

It is easy to see that h(f) > 0. However, one can show that h(f ↾ P ) = 0 and
h(f ↾ P2) > h(f ↾ P1).
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The natural question arises: Is it possible to identify subsets of domain which
have a particular impact on the value of the entropy of the whole function? This
question is interesting because, as the next example will show, sometimes even small
changes have a significant impact on the value of the entropy of a function. This time
the example will regard discontinuous functions, however it is not difficult to show
analogous example for a continuous function.

So, let us consider two functions g, k : [0, 1] 	 whose graphs are presented in
Figure 2.
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Fig. 2

We see that g(0) = k(1) = 1
4 and the graphs of g and k are more and more “dense”

near the point 1 and 0, respectively (their graphs are of the same type as that of
sin( 1

x
)). Notice that “behaviours” of these functions are similar to each other, but

specificity of their behaviours is different on different sets. As a result, h(g) = 0,
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whereas h(k) = +∞. In that sense, the function g may be regarded as “predictable”
and the function k as “strongly chaotic”.

Similar considerations are presented in [23], where one can find other examples of
functions slightly differing from each other, but the entropy of one of them is 0 and
of the second one is greater then 0.

Simultaneously, in consideration of the complexity of entropy definition, one can
ask another question: Is there a simple way to indicate the sets which have a decisive
impact on the value of entropy of a fixed function?

The next part of the chapter is devoted to the answer to the above question. Some
basis of these considerations one can find in [2, 18, 20]. Following [23], we will consider
the concept of f -bundle, which is some generalization of the notion horseshoe (e.g.
[2]).

Let f : X 	. A pair (F , J) = Bf , where F is a family of pairwise disjoint (nons-
ingletons) continuums in X and J ⊂ X is a connected set such that A →

f
J for any

A ∈ F is called an f -bundle. Moreover, if we additionally assume that A ⊂ J for
all A ∈ F then such an f -bundle is called an f -bundle with dominating fibre. By the
cardinality of Bf (denoted by card(Bf )) we will mean the cardinality of the family
F .

Let f : X 	, ε > 0, n ∈ N and Bf = (F , J) be an f -bundle. A set M ⊂
⋃

F
is (Bf , n, ε)-separated if for each x, y ∈ M , x 6= y there is 0 6 i < n such that
f i(x), f i(y) ∈ J and ρ(f i(x), f i(y)) > ε. If

s
Bf
n (ε) = max{card(M) : M ⊂ X is (Bf , n, ε)-separated set},

then the entropy of the f -bundle Bf is defined in the following way:

h(Bf ) = lim
ε→0

lim sup
n→∞

[

1

n
log

(

s
Bf
n (ε)

)

]

.

Theorem 3.1 ([23]). Let f : X 	 be an arbitrary function and Bf = (F , J) be
an f -bundle with dominating fibre. Then h(Bf ) ≥ log(card(Bf )) if Bf is finite and
h(Bf ) = +∞ otherwise.

Recall again the example of the function f : I2 	 presented before.
From now on, the symbol P (t1, t2, t3, t4) will stand for a rectangle with vertices

t1, t2, t3, t4. Then, for the function f , one can consider the following f -bundles with
dominating fibres: (Fi, Ji) (i = {1, 2, 3}): F1 = {P (x, q, r, b4)} and J1 = P (x, q, r, b4),
F2 = {P (a3, a4, b4, b3), P (a1, a2, b2, b1)} and J2 = P (a1, a4, b4, b1); F3 consists of the
grey rectangles (see Figure 3) and J3 = P (c, d, e, k).

Theorem 3.1 implies2 h((F1, J1)) > 0, h((F2, J2)) > log 2 and h((F3, J3)) > log 3.

2 In considered rectangles P (a1, a4, b4, b1) and P (c, d, e, k) one can find f -bundles of cardinality
greater then those presented. However it would require more complicated notation unnecessary for
our further considerations.
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We say that a map f is chaotic in the sense of Li and Yorke if f has orbits of
arbitrarily large periods and there exists an uncountable set B (called a scrambled
set) such that for every x, y ∈ B such that x 6= y and every periodic point z we have

1. lim sup
n→∞

|fn(x)− fn(y)| > 0;

2. lim inf
n→∞

|fn(x)− fn(y)| = 0;

3. lim sup
n→∞

|fn(x)− fn(z)| > 0.

Theorem 3.2 ([23]). Let f : [0, 1] 	 be a continuous function. If there exists an
f -bundle Bf = (F , J) with dominating fibre such that card(Bf ) > 2, then f is chaotic
in the sense of Li and Yorke.

4. Strong entropy points

In this section X still stands for a metric space (X, ρ).
Let us modify in the following way the function f : I2 	 considered previously. At

first, we have considered two rectangles P (a1, a4, b4, b1) and P (c, d, e, k), their parti-
tions onto the smaller rectangles and the function “stretching” each of the rectangles
from partitions onto the whole initial rectangle. In this way, the f -bundles (F2, J2)
and (F3, J3) described above, have been created. Assume that we consider next rect-
angles whose lengths of sides converge to zero, partitions onto more and more parts
and function f “stretching” each of the rectangles from partitions onto the whole
initial rectangle. In this way we can create a sequence of f -bundles (see Figure 4).

It is easy to notice that the entropy of each of successive bundles will be greater
and greater. The observation with the above example may be an intuitive illustration
of the following definitions.
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Let f : X 	. We shall say that a sequence of f -bundles Bk
f = (Fk, Jk) converges to

a point x0 (B
k
f −→

k→∞
x0), if for any ε > 0 there exists k0 ∈ N such that

⋃

Fk ⊂ B(x0, ε)

and B(f(x0), ε) ∩ Jk 6= ∅ for any k > k0. Having the above notion we can define
multifunction Ef : X ⊸ R ∪ {+∞} in the following way:

Ef (x) = {lim sup
n→∞

h(Bn
f ) : B

n
f −→

n→∞
x}.

Obviously for an arbitrary function f : X 	 and a point x0 ∈ X we have Ef (x0) 6= ∅.
An important issue in considering multivalued functions is, in some sense, “regular-

ity” of their values. The most essential kind of such “regularity” deals with closedness.
The next theorems regard simple observations connected with this issue.

Theorem 4.1 ([23]). If f : X 	 is an arbitrary function, then Ef (x) is a closed set
for any x ∈ X.

Theorem 4.2 ([23]). If f : X 	 is a continuous function, then Ef is a closed
multifunction.

Return again to the function f : I2 	 described at the begining of this section. In
each case of considered f -bundles, their entropy is finite, but according to Theorem 3.1
h(f) = +∞. Notice that in this case the entropy of the function is focused around
the point (0, 0). Thus let us adopt the definition which may mean the entropy of
a function at a point.

For any function f : X 	 and x ∈ X the entropy of f at point x, denoted by ef (x),
is defined to be supEf (x).

Theorem 4.3 ([23]). If f : X 	 is an arbitrary function and x ∈ X, then ef (x) 6
h(f).

Theorem 4.4 ([23]). If f : X 	 is a continuous function, then the function ef (x) is
an upper semicontinuous selection.
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In this section we focus our attention also on strong entropy points. We shall say
that a point x0 ∈ X is a strong entropy point of a function f : X 	 if h(f) ∈ Ef (x0)
and x0 ∈ Fix(f). The family of all strong entropy points of a function f will be
denoted by Es(f).

First we note the obvious statements.

Theorem 4.5 ([23]). A point x0 ∈ X is a strong entropy point of a function f : X 	

if and only if ef(x0) = h(f) and x0 ∈ Fix(f).

The above observations imply immediately the following statement.

Theorem 4.6. Let f : X 	 be an arbitrary function and x0 ∈ X.

(a) If x0 ∈ Fix(f) and ef (x0) = +∞, then x0 ∈ Es(f).
(b) If x0 ∈ Fix(f) and +∞ ∈ Ef (x0), then x0 ∈ Es(f).

Notice that in our example of the function f : I2 	, ef((0, 0)) = +∞, so the
entropy of f at the point (0, 0) coincides with the entropy of the whole function and
what is more, the point (0, 0) is a fixed point of f . It means that (0, 0) is a strong
entropy point of f .

The function f : I2 	 considered above is continuous. The natural question arises
whether the similar considerations may be referred to discontinuous functions. The
answer will be contained in Sections 5 and 9.

We will finish this part of the paper with the theorem showing that the notion of
strong entropy point is interesting from the point of view of dynamical systems.

Theorem 4.7. Let functions f : X 	 and g : X 	 be conjugate. Then Es(f) 6= ∅ if
and only if Es(g) 6= ∅.

5. Almost continuous functions defined on m-dimensional

manifold

In this section we will consider approximations of some functions by functions hav-
ing strong entropy point. From the point of view of known facts regarding discrete
dynamical systems and topology, the issue of approximation by use of continuous func-
tions is very importatnt. On the other hand, we aim to combine these considerations
with real functions theory regarding, among others, Zahorski classes. Approximation
of discontinuous functions by continuous functions eliminates the possibility of con-
sidering uniform approximation (i.e. approximation by use of topology of uniform
convergence). Simultaneously, a definition of strong entropy points indicates that our
considerations should be directed towards classes of functions having a fixed point.
Taking into account all the above facts, it is appropriate to consider almost continuous
functions and to investigate graph-approximation (Γ -approximation).

Let (X, τ) be a topological space and K be some class of functions from X into
itself. We shall say that a function f : X 	 is Γ -approximated by functions belonging
to K if for each open set U ⊂ X ×X containing the graph of f , there exists g ∈ K
such that the graph of g is a subset of U .
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In this section we will focus on almost continuous functions in the sense of
Stallings [27], namely on functions f : X 	 which are Γ -approximated by contin-
uous functions. It is known that the family of all functions f : [0, 1] 	 which are
almost continuous and of first Baire class is equal to the family DB1([0, 1]) (see [4]).
However, there exist topological spaces (X, τX), (Y, τY ) and an almost continuous
function f : X → Y such that f ∈ B1(X,Y ) and f 6∈ D(X,Y ) (see [18]). Moreover,
we have the following fact.

Theorem 5.1 ([27]). If X is a Hausdorff space with the fixed point property then
each almost continuous function f : X 	 has a fixed point.

The above theorem plays an important role in the proof of the following claim.

Theorem 5.2 ([23]). Let X be a compact, m-dimensional manifold with boundary
having the fixed point property and f : X 	 be a function. The following conditions
are equivalent:

(1) The function f is almost continuous.
(2) The function f can be Γ -approximated by continuous functions having a strong

entropy point.
(3) The function f can be Γ -approximated by continuous functions having infinite

topological entropy.
(4) The function f can be Γ -approximated by discontinuous but almost continuous

functions having a strong entropy point.
(5) The function f can be Γ -approximated by discontinuous but almost continuous

functions having infinite topological entropy.

6. The Zahorski classes

Working on the issues regarding derivatives, Zygmunt Zahorski distinguished
a hierarchy of classes of functions. Following [29], let us start with definitions of
some classes of sets. All these classes of sets consist of some subsets of R. The class
M0 consists of the empty set and all nonempty sets E of type Fσ such that every
point of E is a point of bilateral accumulation of E. The family of all nonempty sets
E of type Fσ such that every point of E is a point of bilateral condensation of E
complemented by the empty set constitutes the class M1. A set E belongs to the
class M2 if it is empty or if it is a nonempty set of type Fσ and for each x ∈ E and
any ε > 0 sets (x, x+ ε)∩E and (x− ε, x)∩E have a positive measure. The class M3

consists of all nonempty sets E of type Fσ such that there exists a sequence {Kn}n∈N

of closed sets such that E =
⋃

n∈N

Kn and a sequence {ηn}n∈N of numbers such that

0 6 ηn < 1 (n ∈ N) and for each n ∈ N, each x ∈ Kn and each c > 0 there exists
a number ε(x, c) > 0 such that if h and h1 satisfy conditions h · h1 > 0, h

h1
< c,

|h+ h1| < ε(x, c), then

λ(E ∩ (x+ h, x+ h+ h1))

|h1|
> ηn.
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In addition, we assume that the empty set belongs to the class M3. A slight change in
the definition of the class M3 leads us to the class M4. More specifically, in this case,
we replace the above condition 0 6 ηn < 1 (n ∈ N) with the condition 0 < ηn < 1
(n ∈ N). We say that E belongs to the class M5 if it is empty or if it is a nonempty
set of type Fσ and for each x ∈ E we have

lim
h→0+

λ(E ∩ [x− h, x+ h])

2h
= 1, (1)

that is every point of E is a density point of E.
It is worth adding that to check whether a nonempty set E of type Fσ belongs to

the class M3 it is enough to show the following condition: for each x ∈ E and each
sequence {In}n∈N of closed intervals converging to x (i.e. lim

n→∞
dist(x, In) = 0) and

not containing x such that λ(In ∩E) = 0 for each n ∈ N, we have lim
n→∞

λ(In)
dist(x,In)

= 0.

Using the above hierarchy of sets we can define some classes of functions. Let
i ∈ {0, 1, . . . , 5}. We say that a function f : R 	 belongs to the class Mi, if sets
{x : f(x) > α} and {x : f(x) < α} belong to the class Mi for any α ∈ R. Certainly
one can define similar classes for functions f : [0, 1] 	.

Moreover, to simplify notation, let the symbol M6 stand for the family of all
continuous functions. It is easy to see that

M0 ⊃ M1 ⊃ M2 ⊃ M3 ⊃ M4 ⊃ M5 ⊃ M6.

It is well known that all the above inclusions, except the first one from the left,
are proper and M0 = M1 = DB1 ([29, 5]). Therefore, further instead of writing:
the function f is a Darboux function and of first Baire class, we will write briefly:
f ∈ M1.

In [29] one can also find the property saying that the class M5 coincides with the
family of approximately continuous functions i.e the family of functions f having the
following properties (see [9, 10]): for any x ∈ R there exists a Lebesgue measurable
set Ex such that x is a density point of Ex (see condition (1)) and

f(x) = lim
t→x,
t∈Ex

f(t).

Additionally, it is shown there that each derivative (a function f is a derivative if
there exists a function g such that f = g′) belongs to the class M3 and each bounded
derivative is in M4.

Furthermore, it is known that each bounded function from the classM5 is a deriva-
tive (see [10]).

Moreover, we have the following, commonly known, facts.

Proposition ([29]). For any set E ∈ M4 there exists a bounded derivative f : R 	

such that f(x) = 0 for x 6∈ E and f(x) ∈ (0, 1) for x ∈ E.

Proposition ([5]). If E ∈ M4 and x ∈ E, then d(E, x) = lim inf
h→0+

λ(E∩[x−h,x+h])
2h > 0.
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In view of the preceding sections it is also worth noting:

Proposition 6.1. Each function f from the class Mi, for i ∈ {0, 1, . . . , 6}, is almost
continuous.

In the case of discrete dynamical systems, functions whose domain and range is
the same compact space are predominantly studied. In our considerations we will
deal with the unit interval. So, from now on, we will focus on functions from the unit

interval into itself. Let i ∈ {0, 1, . . . , 6}. The symbol M
[0,1]
i denote the family of all

functions f : [0, 1] 	 such that f ∈ Mi.

Theorem 6.2. If f ∈ M
[0,1]
i (i ∈ {0, 1, . . . , 6}), then Fix(f) 6= ∅.

Taking into account Proposition 6.1 and Theorem 5.2 we can immediately show

that each function from M
[0,1]
i is Γ -approximated by continuous functions ξ : [0, 1] 	.

Furthermore, one can prove the following theorem, useful in various considerations.

Theorem 6.3. If f ∈ M
[0,1]
i (i ∈ {0, 1, . . . , 6}), then f is Γ -approximated by contin-

uous functions ξ : [0, 1] 	 such that Fix(ξ) ∩ (0, 1) 6= ∅.

7. A topological entropy of discontinuous function from the

unit interval into itself

As it has been already mentioned in the introduction, the problems connected with
topological properties of dynamical systems (including topics related to topological
entropy) can be also considered in the case of discontinuous functions.

In order to unify considerations we limit our further considerations only to the

functions from the class M
[0,1]
1 and finner classes of functions. From now on we

will assume that all functions belong to the class M
[0,1]
1 . Now, we present

some results related to issue connected with topological entropy of such functions.

Theorem 7.1 ([22]). Let f be a function and n ∈ N \ {1}. If {I1, . . . , In} is a family
of pairwise disjoint closed intervals, then

h(f) > log σ(Mf (I1, . . . , In)).

Theorem 7.2 ([22]). A topological entropy of a function f equals 0 if and only if
h(fn) = 0 for each n ∈ N.

Theorem 7.3 ([22]). If f is a turbulent function3 then h(f) > 0.

Theorem 7.4 (Itinerary Lemma, [28]). For every function f and any family {I1, . . . ,
In} of closed intervals such that I1 →

f
I2 →

f
. . . →

f
In →

f
I1 there exists x0 ∈ I1 such

that x0 ∈ Fix(fn) and f i(x0) ∈ Ii+1 for i ∈ {1, . . . , n− 1}.

3 A function f is turbulent if there exist compact subintervals J,K ⊂ [0, 1] with at most one common
point such that J ∪K ⊂ f(J) ∩ f(K).
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Theorem 7.5 (Sharkovskĭı’s Theorem, [28]). Let <s be the linear ordering of N given
by:

3 <s 5<s 7<. . .<s 2·3<s2 ·5<s . . .<s 2
2 ·3<s 2

2 ·5<s . . .<s 2
3<s 2

2<s 2<s 1

and m,n ∈ N be such that n <s m. If a function f has a periodic orbit of period n,
then f also has a periodic orbit of period m.

Theorem 7.6 ([7]). A function f has a positive topological entropy if and only if f
has a periodic point of period different from power of 2.

As it has been already mentioned in the introduction, one can consider entropy con-
nected with f -invariant measures. In [7] it was investigated in connections to Darboux-
like functions. Now, we shortly recall this concept. Let (X,S, µ) be a probability
measure space (i.e. µ(X) = 1), f : X 	 be a µ-measurable function and µ be an f -
invariant measure (i.e. µ(f−1(A)) = µ(A) for any A ∈ S). Let F = {Ai : i = 1, . . . ,m}
be a decomposition of X such that Ai ∈ S for i ∈ {1, . . . ,m}. If Rn−1(F) is the set
containing all intersections of the form Ai1 ∩ f−1(Ai2 ) ∩ · · · ∩ f−(n−1)(Ain), then

hµ(f,F) = − lim
n→∞

1

n

∑

B∈Rn−1(F)

µ(B) · logµ(B).

The metric entropy, with respect to the measure µ, is the number

hµ(f) = sup{hµ(f,F) : F ⊂ S is a finite decomposition of X}.

Theorem 7.7 ([7]). For any function f we have that

h(f) = sup{hµ(f) : µ is a probability f -invariant Borel measure on X}.

Theorem 7.8 ([7]). If a function f has a periodic point of period 2kq, where q is an
odd number greater than 1 and k ∈ N, then h(f) > 0.

It is worth noting that the above statements are true for wider classes of functions
([7, 28]), but it should be mentioned here that in particular cases it may be more
complex (see [19] in the context of the last theorem).

8. Almost fixed points of functions from the unit interval into

itself belonging to the class M1

For simplicity of notation and considerations we will still discuss only functions

belonging to M
[0,1]
1 . Definition of Darboux point ([6, 16]) and observations connected

with entropy of Darboux-like functions led to distinguishing almost fixed points (see
[22]). In general, almost fixed points have not been combined with strong entropy
points. However, it occurs (see Corollary 8.4) that, under additional assumptions,
these two notions can be combined. This situation is particularly interesting, because
it regards only the case of discontinuous functions (an almost fixed point can not be
a continuity point), thus the study of this notion is the original action distinguishing
earlier research related to continuous functions.
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In the case of considerations connected with the dynamical systems theory, par-
ticularly interesting are the properties being identical for conjugate functions. The
following theorem shows that, from this point of view, the property of “being an al-
most fixed point” is important (of course within the scope of discontinuous Darboux
functions).

Theorem 8.1 ([22]). If functions f and g are topologically conjugate via a homeo-
morphism φ : [0, 1] 	 and x0 ∈ Fixa(f) then φ(x0) ∈ Fixa(g).

The next theorem will show that the name “almost fixed point” is not accidental.

Theorem 8.2 ([22]). If f is a function with x0 ∈ Fixa(f) then (x0 − δ, x0 + δ) ∩
Fix(f) 6= ∅ for each δ > 0.

Theorem 8.3 ([22]). If Fixa(f) is nonempty for a function f , then h(f) = ∞.

Let us introduce a notation Fix∗(f) = Fix(f) ∩ Fixa(f).

Corollary 8.4. If f is a function such that x0 ∈ Fix∗(f), then x0 is a strong entropy
point of f .

Theorem 8.5 ([22]). If f is a function with Fixa(f) 6= ∅, then Pern(f) 6= ∅ for any
n ∈ N.

9. Approximation by functions from the Zahorski classes

Theorem 5.2 leads us to the following question: Is it possible to Γ -approximate
functions from i-th Zahorski class (i = 1, 2, 3, 4) by use of functions from the same
Zahorski class, having a strong entropy point and not belonging to i + 1 Zahorski
class. Notice that the last requirement excludes continuous functions from the set of
Γ -approximating functions (which leads to considerations essentially different from
those regarding entropy of continuous functions). However, we can extend the ques-
tion requiring Γ -approximating functions having only one discontinuity point, which
moreover is a strong entropy point of this function.

First notice that in the case of i = 1 the last demand is impossible. Indeed, let

f ∈ M
[0,1]
1 , U ⊂ [0, 1] × [0, 1] be a nonempty open set containing the graph of f

and g be a function from M
[0,1]
1 \M

[0,1]
2 whose graph belongs to U . Without loss of

generality we can assume that there exist a ∈ R and a set Ea = {x : g(x) > a} such
that Ea ∈ M1 \M2. There is no loss of generality in assuming that there are a point
x ∈ Ea and h > 0 such that λ((x, x + h) ∩ Ea) = 0. Obviously (x, x + h) ∩ Ea 6= ∅
and each point from (x, x + h) ∩ Ea is a discontinuity point of g.

However, the following theorem holds:

Theorem 9.1 ([13]). Let i ∈ {1, 2, . . . , 5}. Each function from the class M
[0,1]
i can be

Γ -approximated by functions belonging to the class M
[0,1]
i \M

[0,1]
i+1 and having a strong

entropy point. Moreover, if i 6= 1 then each function from the class M
[0,1]
i can be Γ -

approximated by functions belonging to the class M
[0,1]
i \M

[0,1]
i+1 and having a strong

entropy point which is simultaneously the only one discontinuity point.
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